数据分析师培训机构郑州哪个好

来源:郑州CDA数据分析培训班时间:2023/11/19 15:55:48

  数据分析师培训机构郑州哪个好,​CDA数据分析师培训,深耕数据人才教育多年,致力于打造数据人才多方位学习平台,汇聚好的学习资源,助力数据人才找到好工作,目前,CDA已与100多所好校进行了战略合作,建立了CDA数据分析师考试中心及人才培养基地。


  • 我们每秒生成
    1.7MB的数据量

  • 普通互联网用户每天
    产生1.5GB的数据量

  • Facebook每天产生4PBPB的数据量
    (包含100亿条消息、3.5亿张照片以及1亿小时的视频浏览)

  • 自动驾驶汽车每天产生4TB的数据量
    (包含100亿条消息、3.5亿张照片以及1亿小时的视频浏览)

  • 智慧工厂每天
    产生1PB的数据量

每时每刻,我们都在产生大量的数据:微信聊天、地铁刷卡、 银行存储…据IDC发布的《数据时代2025》报告显示, 每年产生的数据量将从2018年的33ZB增长到175ZB, 以数据为中心的数字经济时代已经来临, 如何掘金堪比石油的数据是所有个人、企业和的机遇和挑战。
随着数字经济的高速发展,数据分析人才出现了供不应求的状况,数据分析师更是被媒体称为“未来较具发展潜力的职业之一”。有媒体报道,美国的数据分析师平均年薪高达17.5 万美元,而互联网公司,数据分析师的薪酬可能要比同一个级别的其他职位高20%至30%,且颇受企业重视。
  • 人才缺口大
    2020年中国大数据行业人才需求规模高达210万,2025年前仍将保持30%-40%的增速,未来的需求总量在2000万人左右
  • 入学门槛低
    零经验小白也可以学,大专及以上学历即可,专业经验不限
  • 跨领域发展不受限
    几乎所有的行业都会应用到数据,数据分析师可以在各个领域就业
  • 职业寿命长
    受外部业务影响相对较小,职位相对稳定,经验越丰富,越受用人企业青睐
  • 性别无歧视
    数据分析工作必须报以认真严谨的态度,女生的性格从事数据分析是非常适宜的
  • 薪资较高
    2021年数据分析师年平均工资超过24万元,远高于规模以上企业就业人员的年平均工资88115元

结合互联网、金融、科技、城市管理等方向数据业务,成为业务数据分析师

结合互联网、金融、科技、城市管理等方向数据业务,成为业务数据分析师

课程优势
  • 广度
    传统数据分析 + 商业智能BI + 可视化数据分析 + Python数据分析 + Hive大数分析+人工智能
    30+项目案例全程贯穿 + 企业级商业数据分析案例剖析精讲
  • NO.2 深度
    BI商业分析—>数据分析—>大数据分析—>数据挖掘—>机器学习—>推荐系统—>机器视觉(选修)
  • NO.3 价实
    直播+录播(赠送) + 企业导师周末加餐 + 入学即送价值8800元人工智能专业课程 = 物超所值
  • NO.4 就业
    就业面广,即可以从事BI、业务数据分析相关的管理线,也可以从事Python数据分析相关的技术线
  • 科学的人才培养体系
    助你晋升职场“薪”贵
  • 复合场景学习方式
    全方位辅助学习
  • 多阶段性职业规划
    未来由你掌控
  • 直播必修+录播辅修
    讲师精讲答疑
  • 企业实现
    虚拟仿真实训平台
    业务驱动项目实战
  • 定期评测
    课程测试+阶段测试
    结业考试+毕业答辩
  • 全程伴学
    N对1专属答辩群
    日作业讲解点评
  • 资料
    闪卡工具书+电子小抄书
    项目手册+面试集锦
  • 面试模拟
    直击面试重难点
    专项突击式训练
  • 01基础差想入行
    想从事数据分析行业,获得高薪Offer

    1专业不受限,岗位薪资高

    20基础就能学,学完就能用

    3能写在简历上的真实项目经验

  • 02相关行业想涨薪
    构建完善的数据分析知识体系,提升业务实战能力

    1摆脱“人肉取数机器”,突破薪资瓶颈

    2拥有更开阔的业务视角,提升职场竞争力

    3满足大厂数据分析能力模型,斩获高薪Offer

  • 03提升自己想转行
    想要拿到大厂高薪Offer,成为业务操盘手

    1不拍脑门,用数据驱动业务决策

    2搭建核心指标体系,抓住业务核心体系

    3自动化办公,用数据提升找工作效率

  • 04有志于AI方向发展
    想要往人工智领域发展,成为AI专业数据人才

    1不拘泥于现况,挤进人工智能领域

    2成功转型AI行业数据高端人才

    3站在数据,薪资不可估量

  • 机构实力
    高新技术企业
    股票代码:836392
  • 培训经验
    专注IT职业培训
    十八年(2004-2022)
  • 师资团队
    集教研与教学为一体总监级讲师
    领衔授课
  • 课程优势
    涵盖主流数据分析技术、工具搭配更多 的热门实战项目
  • 就业成果
    每年可输送10000+职业IT人才学员入职 众多招聘合作企业
  • 合作企业
    为腾讯、阿里、HP等公司培养了上百个 IT技术团队
  • 阶段1-数据分析
  • 阶段2-数据分析
  • 阶段3-数据分析
  • 阶段4-数据分析
  • 阶段5-数据分析
  • 阶段6-数据分析
  • 阶段7-人工智能
  • 阶段8-可视化报告
  • 阶段9-实战项目
  • 阶段10-拓展模块
  • 阶段1-数据分析 问题定义与数据获取(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段2-数据分析 数据库数据查询与提取(必修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段3-数据分析 数据分析的数理统计基础(辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段4-数据分析 Python数据处理与分析(必修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段5-数据分析 利用Hive进行大数据分析(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段6-数据分析 建模与数据挖掘(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段7-人工智能 实战十大预测数据算法(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段8-可视化报告 BI商业智能与可视化商业数据分析报告撰写(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段9-商业项目实战(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
  • 阶段10-扩展模块(必修+辅修)

    课程名称 课程内容
    数据分析项目流程 问题界定 问题拆分
    指标确定 数据收集
    数据清洗 数据处理
    数据分析 趋势预测
    报告方案
    问题的定义 边界:明确问题的边界
    逻辑:确定业务的关键指标和逻辑
    定性分析与定量分析
    分析问题的模型 基于经典的模型 基于业务的模型
    5W2H 用户画像
    SWORT 销售影响因素
    4P管理模型 市场变化因素
    CATWOE AARRR流量模型
    STAR原则、波士顿5力模型 金定塔思考方法
    数据清洗与处理 数据科学过程 数据清洗定义
    数据清洗任务 数据清洗流程
    数据清洗环境 数据清洗环境
    数据标准化 数据格式与编码
    数据清洗常用工具 数据清洗基本技术方法
    数据抽取 数据转换与加载
    内部数据的获取 产品数据 用户数据
    行为数据 订单数据
    外部公开数据 开放网站 政务公开数据
    数据科学竞赛 数据交易平台
    行业报告 指数平台
    Web网站数据抓取 财经数据抓取 投资数据抓取
    房产数据抓取 舆情数据抓取
    娱乐数据抓取 新媒体数据抓取
    实战-1:51job招聘网站数据抓取与清洗
    实战-2:链家网数据的抓取与数据清洗
    SQL基础操作 建库 建表
    建约束 创建索引
    添加、删除、修改数据
    利用SQL完成数据 的预处理 缺失值处理:对缺失数据行进行删除或填充
    重复值处理:重复值的判断与删除
    异常值处理:清除不必要的空格和极端、异常数据
    利用SQL进行业务数据查询 利用SQL进行简单的业务数据查询 利用SQL完成复杂条件查询
    利用多表关联完成复杂业务查询 利用嵌套子查询完成复杂业务数据分析
    SQL分析 聚合、分组、排序 函数
    行列转换 视图与存储过程
    业务指标统计分析 业务数据表关联查询及查询 结果纵向融合
    ?常业务需求数据宽表构建 应??查询处理复杂业务
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    数据分析的统计学基础(辅修) 基本统计量 概率论基础 数据分布
    均值 独立事件 几何分布
    中位数 条件概率 正态分布
    众数 全概率公式 二项分布
    异常值 贝叶斯定律 泊松分布
    ....... ....... .......
    统计抽样 置信区间 假设检验
    数据分析的数学基础(辅修) 极限的计算和连续函数的性质
    导数/微分的概念和运算法则
    积分的概念和运算法则
    幂级数、泰勒级数、傅里叶级数、傅里叶变换
    向量的概念和运算
    矩阵的转置、乘法、逆矩阵、正交矩阵、SVD奇异值分解、特征值
    行列式的计算和性质
    凸优化
    基于Numpy库的Python数据科学计算 创建数组 切片索引
    数组操作 字符串函数
    数学函数 统计函数.......
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    基于Pandas库的Python数据处理与分析 利用Pandas重成数据表 利用Pandas进行数据查看
    基于Pandas的数据预处理:数据表合并、数据表拆分与排序
    Pandas数据清洗 利用Pandas进行数据提取
    PandasPandas数据统计
    案例-1:Numpy在金融领域中的分析应用
    案例-2:基于Numpy的股价统计分析应用
    利用Matplotlib/Seaborn/pyechart进行Python数据可视化 直方图:探索变量的分布规律
    条形图:展示数值变量的集中趋势
    散点图:表示整体数据的分布规律
    箱线图:表示数据分散性,极值,中位数
    提琴图:分位数的位置及数据密度
    回归图:寻找数据之间的线性关系
    热力图:表未数值的大小或者相关性的高低
    案例-1:抖音用户行为可视化分析
    案例-2:淘宝天猫乐高的销售情况可视化分析
    实战-1:利用SQL进行某零售公司销售业务分析
    实战-2:电商网站流量指标SQL数据分析
    HIVE大数据查询平台搭建 大数据概述 ?数据集群 Hadoop 架构
    Hive开发环璄搭建
    HIVE与MySQL进行数据交换 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 海量业务数据需求查询 Hive数仓
    HQL 数据查询基础语法
    HQL 海量业务数据需求查询 从MySQL中导入数据到Hive
    从Hive导出数据到MySQL
    HQL 业务数据指标统计分析 分区表 分桶表
    关联表 数据查询
    HQL 海量数据查询优化 常?内置函数及开窗函数 特殊类型数组查询?式
    HQL 查询语句优化技巧
    实战-1:基于 Hive 的电影大数据分析实战
    实战-2:基于Hive实现的二手房交易大数据分析
    数据挖掘与分析算法 描述统计 相关分析
    判别分析 方差分析
    时间序列分析 主成分分析
    信度分析 因子分析
    回归分析 对应分析
    列联表分析 聚类分析
    数据挖掘工具——SPSS 01、课程规划与简介 02、数据挖掘项目生命周期
    03、简单必备的统计学基础 04、用Modeler试手挖掘流程
    05、数据挖掘的知识类型 06、商业分析基础简介
    07、回归模型 08、决策树模型
    09、支持向量机 10、聚类模型
    11、关联规则
    数据挖掘工具——SAS 01、SAS概述:SAS简介与教育版安装 02、SAS概述:教育版基本使用
    03、SAS编程基础 04、SAS编程基础7-循环
    05、SAS数据集操作1-合并 06、SAS数据集操作2-排序与对比
    07、SAS数据集操作3-查重与筛选 08、练习-斐波那契数列
    09、练习-百元百鸡问题
    实战:证券业市场绩效与市场结构关系的实证分析
    人工智能实战十大预测数据算 01、机器学习入门 02、sk-learn机器学习库
    03、十大预测算法原理与使用场景 04、算法调用、参数设置
    05、特征选择、特征工程
    06、回归预测模型实战 07、分类预测试模型实战 08、聚类模型实战
    线性回归 决策树 K-means
    逻辑回归 朴素贝叶斯 密度聚类
    ...... ...... ......
    09、集成学习 10、模型优化
    实战-1:天池大赛之天猫用户重复购买行为分析及预测
    实战-2:天池大赛之O2O优惠券使用预测
    商业智能与可视化分析实战 案例-1:BI电商数据市场分析项目实战
    案例-2:BI电商数据客户分析项目实战
    案例-3:BI可视化关于公司运营情况的相关分析
    案例-4:基于Tableau的客户主题对客户进行合理分群
    案例-5:基于Tableau的营销主题分析如何衡量媒体的营销价
    案例-6:基于Tableau的保公司索赔情况分析战
    数据可视化报告撰写 1、数据可视化的概念 2、 数据可视化的意义
    3、 数据可视化的对比 4、 数据可视化的分类
    5、数据可视化图表举例 6、数据可视化应用领域
    7、数据可视化步骤 8、数据可视化工具梯度
    9、图表呈现流程 10、数据报告撰写
    商业智能与可视化分析实战 1、了解电商业务背景
    2、以客户分析为应用场景,对数据进行加载、清洗、分析及模型建立
    3、以货品分析为应用场景,针对品类销售及商品销售进行分析
    4、以流量分析为应用场景,针对流量渠道及关键词做有效分析
    5、根据业务实际背景做舆情分析
    6、将分析结果及建议制成报告进行发布
    商业项目实战(必修+辅修) 商业项目实战01:电商数据分析——分析方式之漏斗模型及数据量化(必学)
    商业项目实战02:电商用户行为与营销模型实战(讲师精讲+录播视频辅修)
    商业项目实战03:金融风控模型的构建与分析实战(讲师精讲+录播视频辅修)
    商业项目实战04:展会电话邀约项目数据分析实战(讲师精讲+录播视频辅修)
    商业项目实战05:零售行业数据分析(讲师精讲+录播视频辅修)
    数据分析项目实战06:游戏行业业务数据分析——页游用户及收入构成分析
    MySQL8 新特性精讲(开窗分析函数、CTE 公用表达式、 USING子句) 1、MYSQL8开窗函数 2、MySQL8 CTE 公用表达式
    3、Mysql ON子句和USING子句 4、项目:亿级淘宝电商SQL数据分析
    5、大厂SQL实战面试题解析
    Python金融量化分析 1、金融量化分析之python必知必会:Python基础,环境安装,NumPy和Pandas
    2、金融量化分析之python必知必会:Python面向对象,数据可视化
    3、金融量化分析之python必知必会:Python数据可视化,金融数据处理与时间序列
    4、金融量化分析之货币的时间价值,金融数据来源,债券估值初步
    5.金融量化分析之资本资产定价模型和多因素模型
    6.金融量化分析之多因素模型与金融时间序列
    7.金融量化分析之资产组合优化与衍生品初步
    8.金融衍生品分析模块1-基础和蒙特卡洛模拟定价的基本原理
    9.金融衍生品分析平台2--模拟类和估值类初步
    10.金融衍生品分析平台3-衍生品资产组合
    11.金融衍生品分析平台3,量化投资数据存储
    12.python量化投资应用中的数据处理
    13.量化投资中常用的回归分析和Logistic回归分析方法
    14.量化投资中的向量化回测方法与实现
    15.机器学习相关方法在量化投资策略构建中的简单应用
    16.构建事件驱动的量化投资回测系统---概述与事件类、数据处理类
    17.事件驱动的交易引擎实现Strategy,Execution和Backtest,均值跨越策略的实际回测
    18.事件驱动的交易引擎的实现-高频均值回复配对交易,模型验证的训练集和测试集分开处理
    19.量化投资实时数据处理与plotly
    20.实时数据综合举例+FXCM平台外汇交易策略回测
    21.FXCM平台交易回测举例+万矿平台+聚宽平台
    FineBI——新一代自助商业数据分析 FineBI是纯商业自助BI工具之一,FineBI 是帆软软件有限公司推出的一款商业智能 (Business Intelligence)产品,FineBI & FineReport它的数据处理很快,可以实时 更新,并且用几秒就可以显示亿级以内的数据。在前端分析时,它呈现数据分析的结果 也是很快的。上手快,因为它基本上没有代码操作,几乎看一个10分钟的教学视频就可 以掌握数据分析的操作方法,帮助文档资源充足,本课程将主要结合一个医院的真实脱 敏数据利用 FineBI(帆软BI)+FineReport 结合进行大屏可视化数据分析报表展示的案例 讲解了时下流程的FineBI工具。
    基于OpenCV的图像处理 人工智能数据集处理实验-1、图像数据预处理—图像处理基础
    人工智能数据集处理实验-2、开源数据集的获取与解读(图像分类方向)
    人工智能数据集处理实验-3、图像预处理方法(上)
    人工智能数据集处理实验-4、图像预处理方法(下)"
扫一扫 免费领取试听课
优先领取试听课
申请试听
以上就是郑州CDA数据分析培训班小编为您推荐的2022深受欢迎的 数据分析师培训机构郑州哪个好的全部内容, 本文内容由互联网用户自发贡献,本站不拥有所有权,不承担相关法律责任,如果发现本站有侵权内容,请联系本站在线客服,我们将第一时间删除处理。

温馨提示:为不影响您的学业,来校区前请先电话或QQ咨询,方便我校安排相关的专业老师为您解答

已有6448人浏览咨询电话:0371-63716661QQ咨询:848587306

  数据分析师培训机构郑州哪个好,CDA数据分析师培训,深耕数据人才教育多年,致力于打造数据人才多方位学习平台,汇聚好的学习资源,助力数据人才找到好工作,目前,CDA已与100多所好校进行了战略合作,建立了CDA数据分析师考试中心及人才培养基地。


  随着大数据时代的到来,企业面临着海量的数据需要进行分析和处理。传统的数据分析方法已经无法满足、准确地提取有价值信息的需求。而机器学习作为一种强大的数据处理工具,能够在数据分析中发挥关键作用,提析效率和准确性。

  数据清洗和预处理: 在数据分析过程中,首先需要进行数据清洗和预处理,以确保数据的质量和一致性。传统的方式通常需要手动进行数据清理,耗费大量的时间和人力资源。而机器学习算法可以自动检测和纠正数据中的异常值、缺失值和错误值,提高数据处理的效率,并减少人为错误的影响。

  特征选择和降维: 在大规模数据集中,特征维度可能非常高,这会导致计算复杂度的增加。机器学习提供了一些有效的特征选择和降维技术,可以从海量特征中筛选出对问题较相关的特征,减少冗余信息。通过减少特征维度,可以降低计算成本,加快模型训练和推理的速度,提高数据分析效率。

  模型选择和优化: 机器学习算法可以根据数据的特点选择较适合的模型,并通过自动调参来优化模型的性能。传统的数据分析方法通常需要经验丰富的手动选择和调整模型参数,这往往耗时且容易出错。而机器学习可以通过自动化的方式,在大量的模型中搜索较佳的组合,减少人工干预,提高模型的度和泛化能力。

  自动化报告和可视化: 机器学习技术可以实现自动生成报告和可视化结果,将复杂的数据分析过程转化为直观、易懂的图表和图像。这样,用户可以更便捷地理解和解释分析结果,做出决策。自动化报告和可视化还能帮助数据分析师与其他团队成员进行有效沟通,促进跨部门合作,提高工作效率。

  预测和优化: 机器学习算法具有强大的预测和优化能力,可以基于历史数据和模式识别,对未来趋势进行预测,并从中发现潜在的商业机会和问题。这种能力使得数据分析师能够更好地理解市场需求和用户行为,及时调整策略,提高业务效益。同时,通过机器学习的优化技术,可以自动化地优化决策和资源分配,实现较佳化运营。

新闻动态
郑州CDA数据分析培训班好不好怎么样 | 郑州CDA数据分析培训班联系电话 | 短信获取地址 | 咨询电话:0371-63716661

提交留言后老师会第一时间与您联系!热线电话:0371-63716661